Presented by: RICHARD J.KOSCIEJEW
The history of science reveals that scientific knowledge and method did not emerge as full-blown from the minds of the ancient Greek any more than language and culture emerged fully formed in the minds of ‘Homo sapient’. ‘ Scientific knowledge is an extension of ordinary language into grater levels of abstraction and precision through reliance upon geometric and numerical relationships. We speculate that the seeds of the scientific imagination were planted in ancient Greece, as opposed to Chinese or Babylonian culture, partly because the social, political and an economic climate in Greece was more open to the pursuit of knowledge with marginal cultural utility. Another important factor was that the special character of Homeric religion allowed the Greeks to invent a conceptual framework that would prove useful in future scientific investigation. But it was only after this inheritance from Greek philosophy was wedded to some essential features of Judeo-Christian beliefs about the origin of the cosmos that the paradigm for classical physics emerged.
The philosophical debate that had led to conclusions useful to the architects of classical physics can be briefly summarized, such when Thale’s fellow Milesian Anaximander claimed that the first substance, although indeterminate, manifested itself in a conflict of oppositions between hot and cold, moist and dry. The idea of nature as a self-regulating balance of forces was subsequently elaborated upon by Heraclitus (d. after 480 BC), who asserted that the fundamental substance is strife between opposites, which is itself the unity of the whole. It is, said Heraclitus, the tension between opposites that keeps the whole from simply ‘passing away.’
Parmenides of Elea (B.c. 515 BC) argued in turn that the unifying substance is unique and static being. This led to a conclusion about the relationship between ordinary language and external reality that was later incorporated into the view of the relationship between mathematical language and physical reality. Since thinking or naming involves the presence of something, said Parmenides, thought and language must be dependent upon the existence of objects outside the human intellect. Presuming a one-to-one correspondence between word and idea and actual existing things, Parmenides concluded that our ability to think or speak of a thing at various times implies that it exists at all times. Hence the indivisible One does not change, and all perceived change is an illusion.
These assumptions emerged in roughly the form in which they would be used by the creators of classical physics in the thought of the atomists. Leucippus :
l. 450-420 BC and Democritus ©. 460-c. 370 BC ). They reconciled the two dominant and seemingly antithetical concepts of the fundamental character of being-Becoming ( Heraclitus ) and unchanging Being (Parmenides)-in a remarkable simple and direct way. Being, they said, is present in the invariable substance of the atoms that, through blending and separation, make up the thing of changing or becoming worlds.
The last remaining feature of what would become the paradigm for the first scientific revolution in the seventeenth century is attributed to Pythagoras (Bc. 570 Bc). Like Parmenides, Pythagoras also held that the perceived world is illusory and that there is an exact correspondence between ideas and aspects of external reality. Pythagoras, however, had a different conception of the character of the idea that showed this correspondence. The truth about the fundamental character of the unified and unifying substance, which could be uncovered through reason and contemplation, is, he claimed, mathematical in form.
Pythagoras established and was the cental figure in a school of philosophy, religion and mathematics; He was apparently viewed by his followers as semi-divine. For his followers the regular solids ( symmetrical three-dimensional forms in which all sides are the same regular polygons ) and whole numbers became revered essences of sacred ideas. In contrast with ordinary language, the language of mathematics and geometric forms seemed closed, precise and pure. Providing one understood the axioms and notations, and the meaning conveyed was invariant from one mind to another. The Pythagoreans felt that the language empowered the mind to leap beyond the confusion of sense experience into the realm of immutable and eternal essences. This mystical insight made Pythagoras the figure from antiquity most revered by the creators of classical physics, and it continues to have great appeal for contemporary physicists as they struggle with the epistemological implications of the quantum mechanical description of nature.
Yet, least of mention, progress was made in mathematics, and to a lesser extent in physics, from the time of classical Greek philosophy to the seventeenth century in Europe. In Baghdad, for example, from about A.D. 750 to A.D. 1000, substantial advancement was made in medicine and chemistry, and the relics of Greek science were translated into Arabic, digested, and preserved. Eventually these relics reentered Europe via the Arabic kingdom of Spain and Sicily, and the work of figures like Aristotle universities of France, Italy, and England during the Middle Ages.
For much of this period the Church provided the institutions, like the reaching orders, needed for the rehabilitation of philosophy. But the social, political and an intellectual climate in Europe was not ripe for a revolution in scientific thought until the seventeenth century. Until later in time, lest as far into the nineteenth century, the works of the new class of intellectuals we called scientists, whom of which were more avocations than vocation, and the word scientist do not appear in English until around 1840.
Copernicus (1473-1543 ) would have been described by his contemporaries as an administrator, a diplomat, an avid student of economics and classical literature, and most notable, a highly honoured and placed church dignitaries. Although we named a revolution after him, his devoutly conservative man did not set out to create one. The placement of the Sun at the centre of the universe, which seemed right and necessary to Copernicus, was not a result of making careful astronomical observations. In fact, he made very few observations in the course of developing his theory, and then only to ascertain if his prior conclusions seemed correct. The Copernican system was also not any more useful in making astrological calculations than the accepted model and was, in some ways, much more difficult to implement. What, then, was his motivation for creating the model and his reasons for presuming that the model was correct?
Copernicus felt that the placement of the Sun at the centre of the universe made sense because he viewed the Sun as the symbol of the presence of a supremely intelligent and intelligible God in a man-centred world. He was apparently led to this conclusion in part because the Pythagoreans believed that fire exists at the centre of the cosmos, and Copernicus identified this fire with the fireball of the Sun. the only support that Copernicus could offer for the greater efficacy of his model was that it represented a simpler and more mathematical harmonious model of the sort that the Creator would obviously prefer. The language used by Copernicus in ‘The Revolution of Heavenly Orbs,’ illustrates the religious dimension of his scientific thought: ‘In the midst of all the sun reposes, unmoving. Who, indeed, in this most beautiful temple would place the light-giver in any other part than from where it can illumine all other parts?’
The belief that the mind of God as Divine Architect permeates the working of nature was the guiding principle of the scientific thought of Johannes Kepler ( or Keppler, 1571-1630 ). For this reason, most modern physicists would probably feel some discomfort in reading Kepler’s original manuscripts. Physics and metaphysics, astronomy and astrology, geometry and theology commingle with an intensity that might offend those who practice science in the modern sense of that word. Physical laws, wrote Kepler, ‘lie within the power of understanding of the human mind; God wanted us to perceive them when he created us of His own image, in order . . . that we may take part in His own thoughts. Our knowledge of numbers and quantities is the same as that of God’s, at least insofar as we can understand something of it in this mortal life.’
Believing, like Newton after him, in the literal truth of the words of the Bible, Kepler concluded that the word of God is also transcribed in the immediacy of observable nature. Kepler’s discovery that the motions of the planets around the Sun were elliptical, as opposed perfecting circles, may have made the universe seem a less perfect creation of God on ordinary language. For Kepler, however, the new model placed the Sun, which he also viewed as the emblem of a divine agency, more at the centre of mathematically harmonious universes than the Copernican system allowed. Communing with the perfect mind of God requires as Kepler put it ‘knowledge of numbers and quantity.’
Since Galileo did not use, or even refer to, the planetary laws of Kepler when those laws would have made his defence of the heliocentric universe more credible, his attachment to the god-like circle was probably a more deeply rooted aesthetic and religious ideal. But it was Galileo, even more than Newton, who was responsible for formulating the scientific idealism that quantum mechanics now force us to abandon. In ‘Dialogue Concerning the Two Great Systems of the World,’ Galileo said about the following about the followers of Pythagoras: ‘I know perfectly well that the Pythagoreans had the highest esteem for the science of number and that Plato himself admired the human intellect and believed that it participates in divinity solely because it is able to understand the nature of numbers. And I myself am inclined to make the same judgement.’
This article of faith-mathematical and geometrical ideas mirror precisely the essences of physical reality was the basis for the first scientific law of this new science, a constant describing the acceleration of bodies in free fall, could not be confirmed by experiment. The experiments conducted by Galileo in which balls of different sizes and weights were rolled simultaneously down an inclined plane did not, as he frankly admitted, their precise results. And since a vacuum pumps had not yet been invented, there was simply no way that Galileo could subject his law to rigorous experimental proof in the seventeenth century. Galileo believed in the absolute validity of this law in the absence of experimental proof because he also believed that movement could be subjected absolutely to the law of number. What Galileo asserted, as the French historian of science Alexander Koyré put it, was ‘that the real are in its essence, geometrical and, consequently, subject to rigorous determination and measurement.’
The popular image of Isaac Newton (1642-1727) is that of a supremely rational and dispassionate empirical thinker. Newton, like Einstein, had the ability to concentrate unswervingly on complex theoretical problems until they yielded a solution. But what most consumed his restless intellect were not the laws of physics. In addition to believing, like Galileo that the essences of physical reality could be read in the language of mathematics, Newton also believed, with perhaps even greater intensity than Kepler, in the literal truths of the Bible.
For Newton the mathematical languages of physics and the language of biblical literature were equally valid sources of communion with the eternal writings in the extant documents alone consist of more than a million words in his own hand, and some of his speculations seem quite bizarre by contemporary standards. The Earth, said Newton, will still be inhabited after the day of judgement, and heaven, or the New Jerusalem, must be large enough to accommodate both the quick and the dead. Newton then put his mathematical genius to work and determined the dimensions required to house the population, his rather precise estimate was ‘the cube root of 12,000 furlongs.’
The pint is, that during the first scientific revolution the marriage between mathematical idea and physical reality, or between mind and nature via mathematical theory, was viewed as a sacred union. In our more secular age, the correspondence takes on the appearance of an unexamined article of faith or, to borrow a phrase from William James (1842-1910), ‘an altar to an unknown god.’ Heinrich Hertz, the famous nineteenth-century German physicist, nicely described what there is about the practice of physics that tends to inculcate this belief: ‘One cannot escape the feeling that these mathematical formulae have an independent existence and intelligence of their own that they are wiser than we, wiser than their discoveries. That we get more out of them than was originally put into them.’
While Hertz made this statement without having to contend with the implications of quantum mechanics, the feeling, the described remains the most enticing and exciting aspects of physics. That elegant mathematical formulae provide a framework for understanding the origins and transformations of a cosmos of enormous age and dimensions are a staggering discovery for bidding physicists. Professors of physics do not, of course, tell their students that the study of physical laws in an act of communion with thee perfect mind of God or that these laws have an independent existence outside the minds that discover them. The business of becoming a physicist typically begins, however, with the study of classical or Newtonian dynamics, and this training provides considerable covert reinforcement of the feeling that Hertz described.
Perhaps, the best way to examine the legacy of the dialogue between science and religion in the debate over the implications of quantum non-locality is to examine the source of Einstein’s objections tp quantum epistemology in more personal terms. Einstein apparently lost faith in the God portrayed in biblical literature in early adolescence. But, as appropriated, . . . the ‘Autobiographical Notes’ give to suggest that there were aspects that carry over into his understanding of the foundation for scientific knowledge, . . . ‘Thus I came despite the fact that I was the son of an entirely irreligious [Jewish] Breeden heritage, which is deeply held of its religiosity, which, however, found an abrupt end at the age of 12. Though the reading of popular scientific books I soon reached the conviction that much in the stories of the Bible could not be true. The consequence waw a positively frantic [ orgy ] of freethinking coupled with the impression that youth is intentionally being deceived by the stat through lies that it was a crushing impression. Suspicion against every kind of authority grew out of this experience. . . . It was clear to me that the religious paradise of youth, which was thus lost, was a first attempt ti free myself from the chains of the ‘merely personal’. . . . The mental grasp of this extra-personal world within the frame of the given possibilities swam as highest aim half consciously and half unconsciously before the mind’s eye.’
What is more, was, suggested Einstein, belief in the word of God as it is revealed in biblical literature that allowed him to dwell in a ‘religious paradise of youth’ and to shield himself from the harsh realities of social and political life. In an effort to recover that inner sense of security that was lost after exposure to scientific knowledge, or to become free once again of the ‘merely personal’, he committed himself to understanding the ‘extra-personal world within the frame of given possibilities’, or as seems obvious, to the study of physics. Although the existence of God as described in the Bible may have been in doubt, the qualities of mind that the architects of classical physics associated with this God were not. This is clear in the comments from which Einstein uses of mathematics, . . . ‘Nature is the realization of the simplest conceivable mathematical ideas. I am convinced that we can discover, by means of purely mathematical construction, those concepts and those lawful connections between them that furnish the key to the understanding of natural phenomena. Experience remains, of course, the sole criteria of physical utility of a mathematical construction. But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.’
This article of faith, first articulated by Kepler, that ‘nature is the realization of the simplest conceivable mathematical ideas’ allowed for Einstein to posit the first major law of modern physics much as it allows Galileo to posit the first major law of classical physics. During which time, when the special and then the general theories of relativity had not been confirmed by experiment and many established physicists viewed them as at least minor heresies, Einstein remained entirely confident of their predictions. Ilse Rosenthal-Schneider, who visited Einstein shortly after Eddington’s eclipse expedition confirmed a prediction of the general theory ( 1919 ), described Einstein’s response to this news: When I was giving expression to my joy that the results coincided with his calculations, he said quite unmoved, ‘But I knew the theory was correct,’ and when I asked, what if there had been no confirmation of his prediction, he countered: ‘Then I would have been sorry for the dear Lord -the theory is correct.’
Einstein was not given to making sarcastic or sardonic comments, particularly on matters of religion. These unguarded responses testify to his profound conviction that the language of mathematics allows the human mind access to immaterial and immutable truths existing outside of the mind that conceived them. Although Einstein’s belief was far more secular than Galileo’s, it retained the same essential ingredients.
What continued in the twenty-three-year-long debate between Einstein and Bohr, least of mention? The primary article drawing upon its faith that contends with those opposing to the merits or limits of a physical theory, at the heart of this debate was the fundamental question, ‘What is the relationship between the mathematical forms in the human mind called physical theory and physical reality?’ Einstein did not believe in a God who spoke in tongues of flame from the mountaintop in ordinary language, and he could not sustain belief in the anthropomorphic God of the West. There is also no suggestion that he embraced ontological monism, or the conception of Being featured in Eastern religious systems, like Taoism, Hinduism, and Buddhism. The closest that Einstein apparently came to affirming the existence of the ‘extra-personal’ in the universe was a ‘cosmic religious feeling’, which he closely associated with the classical view of scientific epistemology.
The doctrine that Einstein fought to preserve seemed the natural inheritance of physics until the advent of quantum mechanics. Although the mind that constructs reality might be evolving fictions that are not necessarily true or necessary in social and political life, there was, Einstein felt, a way of knowing, purged of deceptions and lies. He was convinced that knowledge of physical reality in physical theory mirrors the preexistent and immutable realm of physical laws. And as Einstein consistently made clear, this knowledge mitigates loneliness and inculcates a sense of order and reason in a cosmos that might appear otherwise bereft of meaning and purpose.
What most disturbed Einstein about quantum mechanics was the fact that this physical theory might not, in experiment or even in principle, mirrors precisely the structure of physical reality. There is, for all the reasons we seem attested of, in that an inherent uncertainty in measurement made, . . . a quantum mechanical process reflects of a pursuit that quantum theory in itself and its contributive dynamic functionalities that there lay the attribution of a completeness of a quantum mechanical theory. Einstein’s fearing that it would force us to recognize that this inherent uncertainty applied to all of physics, and, therefore, the ontological bridge between mathematical theory and physical reality -does not exist. And this would mean, as Bohr was among the first to realize, that we must profoundly revive the epistemological foundations of modern science.
The world view of classical physics allowed the physicist to assume that communion with the essences of physical reality via mathematical laws and associated theories was possible, but it made no other provisions for the knowing mind. In our new situation, the status of the knowing mind seems quite different. Modern physics distributively contributed its view toward the universe as an unbroken, undissectable and undivided dynamic whole. ‘There can hardly be a sharper contrast,’ said Melic Capek, ‘than that between the everlasting atoms of classical physics and the vanishing ‘particles’ of modern physics as Stapp put it: ‘Each atom turns out to be nothing but the potentialities in the behaviour pattern of others. What we find, therefore, are not elementary space-time realities, but rather a web of relationships in which no part can stand alone, every part derives its meaning and existence only from its place within the whole’’
The characteristics of particles and quanta are not isolatable, given particle-wave dualism and the incessant exchange of quanta within matter-energy fields. Matter cannot be dissected from the omnipresent sea of energy, nor can we in theory or in fact observe matter from the outside. As Heisenberg put it decades ago, ‘the cosmos appears to be a complicated tissue of events, in which connection of different kinds alternate or overlay or combine and thereby determine the texture of the whole. This means that a pure reductionist approach to understanding physical reality, which was the goal of classical physics, is no longer appropriate.
While the formalism of quantum physics predicts that correlations between particles over space-like separated regions are possible, it can say nothing about what this strange new relationship between parts ( quanta ) and whole ( cosmos ) was by means an outside formalism. This does not, however, prevent us from considering the implications in philosophical terms, as the philosopher of science Errol Harris noted in thinking about the special character of wholeness in modern physics, a unity without internal content is a blank or empty set and is not recognizable as a whole. A collection of merely externally related parts does not constitute a whole in that the parts will not be ‘mutually adaptive and complementary to one and another.’
Wholeness requires a complementary relationship between unity and differences and is governed by a principle of organization determining the interrelationship between parts. This organizing principle must be universal to a genuine whole and implicit in all parts that constitute the whole, even though the whole is exemplified only in its parts. This principle of order, Harris continued, ‘is nothing really in and of itself. It is the way parts are organized and not another constituent addition to those that constitute the totality.’
In a genuine whole, the relationship between the constituent parts must be ‘internal or immanent’ in the parts, as opposed to a mere spurious whole in which parts appear to disclose wholeness due to relationships that are external to the parts. The collection of parts that would allegedly constitute the whole in classical physics is an example of a spurious whole. Parts constitute a genuine whole when the universal principle of order is inside the parts and thereby adjusts each to all that they interlock and become mutually complementary. This not only describes the character of the whole revealed in both relativity theory and quantum mechanics. It is also consistent with the manner in which we have begun to understand the relation between parts and whole in modern biology.
Modern physics also reveals, claims Harris, a complementary relationship between the differences between parts that constituted contentual representations that the universal ordering principle that is immanent in each of the parts. While the whole cannot be finally disclosed in the analysis of the parts, the study of the differences between parts provides insights into the dynamic structure of the whole present in each of the parts. The part can never, nonetheless, be finally isolated from the web of relationships that disclose the interconnections with the whole, and any attempt to do so results in ambiguity.
Much of the ambiguity in attempted to explain the character of wholes in both physics and biology derives from the assumption that order exists between or outside parts. But order in complementary relationships between differences and sameness in any physical event is never external to that event -the connections are immanent in the event. From this perspective, the addition of non-locality to this picture of the dynamic whole is not surprising. The relationship between part, as quantum event apparent in observation or measurement, and the undissectable whole, revealed but not described by the instantaneous, and the undissectable whole, revealed but described by the instantaneous correlations between measurements in space-like separated regions, is another extension of the part-whole complementarity to modern physics.
If the universe is a seamlessly interactive system that evolves to a higher level of complexity, and if the lawful regularities of this universe are emergent properties of this system, we can assume that the cosmos is a singular point of significance as a whole that evinces of the ‘progressive principal order’ of complementary relations its parts. Given that this whole exists in some sense within all parts ( quanta ), one can then argue that it operates in self-reflective fashion and is the ground for all emergent complexities. Since human consciousness evinces self-reflective awareness in the human brain and since this brain, like all physical phenomena can be viewed as an emergent property of the whole, it is reasonable to conclude, in philosophical terms at least, that the universe is conscious.
But since the actual character of this seamless whole cannot be represented or reduced to its parts, it lies, quite literally beyond all human representations or descriptions. If one chooses to believe that the universe be a self-reflective and self-organizing whole, this lends no support whatsoever to conceptions of design, meaning, purpose, intent, or plan associated with any mytho-religious or cultural heritage. However, If one does not accept this view of the universe, there is nothing in the scientific descriptions of nature that can be used to refute this position. On the other hand, it is no longer possible to argue that a profound sense of unity with the whole, which has long been understood as the foundation of religious experience, which can be dismissed, undermined or invalidated with appeals to scientific knowledge.
While we have consistently tried to distinguish between scientific knowledge and philosophical speculation based on this knowledge -there is no empirically valid causal linkage between the former and the latter. Those who wish to dismiss the speculative assumptions as its basis to be drawn the obvious freedom of which id firmly grounded in scientific theory and experiments there is, however, in the scientific description of nature, the belief in radical Cartesian division between mind and world sanctioned by classical physics. Seemingly clear, that this separation between mind and world was a macro-level illusion fostered by limited awarenesses of the actual character of physical reality and by mathematical idealization that were extended beyond the realm of their applicability.
Thus, the grounds for objecting to quantum theory, the lack of a one-to-one correspondence between every element of the physical theory and the physical reality it describes, may seem justifiable and reasonable in strictly scientific terms. After all, the completeness of all previous physical theories was measured against the criterion with enormous success. Since it was this success that gave physics the reputation of being able to disclose physical reality with magnificent exactitude, perhaps a more comprehensive quantum theory will emerge to insist on these requirements.
All indications are, however, that no future theory can circumvent quantum indeterminancy, and the success of quantum theory in co-ordinating our experience with nature is eloquent testimony to this conclusion. As Bohr realized, the fact that we live in a quantum universe in which the quantum of action is a given or an unavoidable reality requires a very different criterion for determining the completeness or physical theory. The new measure for a complete physical theory is that it unambiguously confirms our ability to co-ordinate more experience with physical reality.
If a theory does so and continues to do so, which is certainly the case with quantum physics, then the theory must be deemed complete. Quantum physics not only works exceedingly well, it is, in these terms, the most accurate physical theory that has ever existed. When we consider that this physics allows us to predict and measure quantities like the magnetic moment of electrons to the fifteenth decimal place, we realize that accuracy per se is not the real issue. The real issue, as Bohr rightly intuited, is that this complete physical theory effectively undermines the privileged relationship in classical physics between ‘theory’ and ‘physical reality’.
If the universe is a seamlessly interactive system that evolves to higher levels of complex and complicating regularities of which ae lawfully emergent in property of systems, we can assume that the cosmos is a single significant whole that evinces progressive order in complementary relations to its parts. Given that this whole exists in some sense within all parts ( quanta ), one can then argue that in operates in self-reflective fashion and is the ground from all emergent plexuities. Since human consciousness evinces self-reflective awareness in te human brain ( well protected between the cranium walls ) and since this brain, like all physical phenomena, can b viewed as an emergent property of the whole, it is unreasonable to conclude, in philosophical terms at least, that the universe is conscious.
Nevertheless, since the actual character of this seamless whole cannot be represented or reduced to its parts, it lies, quite laterally, beyond all human representation or descriptions. If one chooses to believe that the universe be a self-reflective and self-organizing whole, this lends no support whatsoever to conceptual representation of design, meaning, purpose, intent, or plan associated with mytho-religious or cultural heritage. However, if one does not accept this view of the universe, there is noting in the scientific description of nature that can be used to refute this position. On the other hand, it is no longer possible to argue that a profound sense of unity with the whole, which has long been understood as foundation of religious experiences, but can be dismissed, undermined, or invalidated with appeals to scientific knowledge.
While we have consistently tried to distinguish between scientific knowledge and philosophical speculation based on this of what is obtainable, let us be quite clear on one point - there is no empirically valid causal linkage between the former and the latter. Those who wish to dismiss the speculative base on which is obviously free to do as done. However, there is another conclusion to be drawn, in that is firmly grounded in scientific theory and experiment there is no basis in the scientific descriptions of nature for believing in the radical Cartesian division between mind and world sanctioned by classical physics. Clearly, his radical separation between mind and world was a macro-level illusion fostered by limited awareness of the actual character of physical reality nd by mathematical idealizations extended beyond the realms of their applicability.
Nevertheless, the philosophical implications might prove in themselves as a criterial motive in debative consideration to how our proposed new understanding of the relationship between parts and wholes in physical reality might affect the manner in which we deal with some major real-world problems. This will issue to demonstrate why a timely resolution of these problems is critically dependent on a renewed dialogue between members of the cultures of human-social scientists and scientist-engineers. We will also argue that the resolution of these problems could be dependent on a renewed dialogue between science and religion.
As many scholars have demonstrated, the classical paradigm in physics has greatly influenced and conditioned our understanding and management of human systems in economic and political realities. Virtually all models of these realities treat human systems as if they consist of atomized units or parts that interact with one another in terms of laws or forces external to or between the parts. These systems are also viewed as hermetic or closed and, thus, its discreteness, separateness and distinction.
Consider, for example, how the classical paradigm influenced or thinking about economic reality. In the eighteenth and nineteenth centuries, the founders of classical economics -figures like Adam Smith, David Ricardo, and Thomas Malthus conceived of the economy as a closed system in which intersections between parts (consumer, produces, distributors, etc.) are controlled by forces external to the parts (supply and demand). The central legitimating principle of free market economics, formulated by Adam Smith, is that lawful or law-like forces external to the individual units function as an invisible hand. This invisible hand, said Smith, frees the units to pursue their best interests, moves the economy forward, and in general legislates the behaviour of parts in the best vantages of the whole. (The resemblance between the invisible hand and Newton’s universal law of gravity and between the relations of parts and wholes in classical economics and classical physics should be transparent.)
After roughly 1830, economists shifted the focus to the properties of the invisible hand in the interactions between pats using mathematical models. Within these models, the behaviour of pats in the economy is assumed to be analogous to the awful interactions between pats in classical mechanics. It is, therefore, not surprising that differential calculus was employed to represent economic change in a virtual world in terms of small or marginal shifts in consumption or production. The assumption was that the mathematical description of marginal shifts n the complex web of exchanges between parts (atomized units and quantities) and whole (closed economy) could reveal the lawful, or law-like, machinations of the closed economic system.
These models later became one of the fundamentals for microeconomics. Microeconomics seek to describe interactions between parts in exact quantifiable measures-such as marginal cost, marginal revenue, marginal utility, and growth of total revenue as indexed against individual units of output. In analogy with classical mechanics, the quantities are viewed as initial conditions that can serve to explain subsequent interactions between parts in the closed system in something like deterministic terms. The combination of classical macro-analysis with micro-analysis resulted in what Thorstein Veblen in 1900 termed neoclassical economics-the model for understanding economic reality that is widely used today
Beginning in the 1939s, the challenge became to subsume the understanding of the interactions between parts in closed economic systems with more sophisticated mathematical models using devices like linear programming, game theory, and new statistical techniques. In spite of the growing mathematical sophistication, these models are based on the same assumptions from classical physics featured in previous neoclassical economic theory-with one exception. They also appeal to the assumption that systems exist in equilibrium or in perturbations from equilibria, and they seek to describe the state of the closed economic system in these terms.
One could argue that the fact that our economic models are assumptions from classical mechanics is not a problem by appealing to the two-domain distinction between micro-level macro-level processes expatiated upon earlier. Since classical mechanic serves us well in our dealings with macro-level phenomena in situations where the speed of light is so large and the quantum of action is so small as to be safely ignored for practical purposes, economic theories based on assumptions from classical mechanics should serve us well in dealing with the macro-level behaviour of economic systems.
The obvious problem, . . . acceded peripherally, . . . nature is relucent to operate in accordance with these assumptions, in that the biosphere, the interaction between parts be intimately related to the hole, no collection of arts is isolated from the whole, and the ability of the whole to regulate the relative abundance of atmospheric gases suggests that the whole of the biota appear to display emergent properties that are more than the sum of its parts. What the current ecological crisis reveals in the abstract virtual world of neoclassical economic theory. The real economies are all human activities associated with the production, distribution, and exchange of tangible goods and commodities and the consumption and use of natural resources, such as arable land and water. Although expanding economic systems in the really economy ae obviously embedded in a web of relationships with the entire biosphere, our measure of healthy economic systems disguises this fact very nicely. Consider, for example, the healthy economic system written in 1996 by Frederick Hu, head of the competitive research team for the World Economic Forum - short of military conquest, economic growth is the only viable means for a country to sustain increases in natural living standards . . . An economy is internationally competitive if it performs strongly in three general areas: Abundant productive inputs from capital, labour, infrastructure and technology, optimal economic policies such as low taxes, little interference, free trade and sound market institutions. Such as the rule of law and protection of property rights.
The prescription for medium-term growth of economies ion countries like Russia, Brazil, and China may seem utterly pragmatic and quite sound. But the virtual economy described is a closed and hermetically sealed system in which the invisible hand of economic forces allegedly results in a health growth economy if impediments to its operation are removed or minimized. It is, of course, often trued that such prescriptions can have the desired results in terms of increases in living standards, and Russia, Brazil and China are seeking to implement them in various ways.
In the real economy, however, these systems are clearly not closed or hermetically sealed: Russia uses carbon-based fuels in production facilities that produce large amounts of carbon dioxide and other gases that contribute to global warming: Brazil is in the process of destroying a rain forest that is critical to species diversity and the maintenance of a relative abundance of atmospheric gases that regulate Earth temperature, and China is seeking to build a first-world economy based on highly polluting old-world industrial plants that burn soft coal. Not to forget, . . . the victual economic systems that the world now seems to regard as the best example of the benefits that can be derived form the workings of the invisible hand, that of the United States, operates in the real economy as one of the primary contributors to the ecological crisis.
In ‘Consilience,’ Edward O. Wilson makes to comment, the case that effective and timely solutions to the problem threatening human survival is critically dependent on something like a global revolution in ethical thought and behaviour. But his view of the basis for this revolution is quite different from our own. Wilson claimed that since the foundations for moral reasoning evolved in what he termed ‘gene-culture’ evolution, the rules of ethical behaviour re emergent aspects of our genetic inheritance. Based on the assumptions that the behaviour of contemporary hunter-gatherers resembles that of our hunter-gatherers forebears in the Palaeolithic Era, he drew on accounts of Bushman hunter-gatherers living in the centre Kalahari in an effort to demonstrate that ethical behaviour is associated with instincts like bonding, cooperation, and altruism.
Wilson argued that these instincts evolved in our hunter-gatherer accessorial descendabilities, whereby genetic mutation and the ethical behaviour associated with these genetically based instincts provided a survival advantage. He then claimed that since these genes were passed on to subsequent generations of our dependable characteristics, which eventually became pervasive in the human genome, the ethical dimension of human nature has a genetic foundation. When we fully understand the ‘innate epigenetic rules of moral reasoning,’ it seems probable that the rules will probably turn out to be an ensemble of many algorithms whose interlocking activities guide the mind across a landscape of nuances moods and choices.
Any reasonable attempt to lay a firm foundation beneath the quagmire of human ethics in all of its myriad and often contradictory formulations is admirable, and Wilson’s attempt is more admirable than most. In our view, however, there is little or no prospect that I will prove successful for a number of reasons. Wile te probability for us to discover some linkage between genes and behaviour, seems that the lightened path of human ethical behaviour and ranging advantages of this behaviour is far too complex, not o mention, inconsistently been reduced to a given set classification of ‘epigenetic ruled of moral reasoning.’
Also, moral codes may derive in part from instincts that confer a survival advantage, but when we are t examine these codes, it also seems clear that they are primarily cultural products. This explains why ethical systems are constructed in a bewildering variety of ways in different cultural contexts and why they often sanction or legitimate quite different thoughts and behaviours. Let us not forget that rules f ethical behaviours are quite malleable and have been used to sacredly legitimate human activities such as slavery, colonial conquest, genocide and terrorism. As Cardinal Newman cryptically put it, ‘Oh how we hate one another for the love of God.’
According to Wilson, the ‘human mind evolved to believe in the gods’ and people ‘need a sacred narrative’ to his view are merely human constructs and, therefore, there is no basis for dialogue between the world views of science and religion. ‘Science for its part, will test relentlessly every assumption about the human condition and in time uncover the bedrock of the moral and religiously sentient. The eventual result of the competition between the two world view, is believed, as I, will be the secularization of the human epic and of religion itself.
Wilson obviously has a right to his opinions, and many will agree with him for their own good reasons, but what is most interesting about his thoughtful attempted to posit a more universal basis for human ethics in that it s based on classical assumptions about the character of both physical and biological realities. While Wilson does not argue that human’s behaviour is genetically determined in the strict sense, however, he does allege that there is a causal linkage between genes and behaviour that largely condition this behaviour, he appears to be a firm believer in classical assumption that reductionism can uncover the lawful essences that principally govern the physical aspects attributed to reality, including those associated with the alleged ‘epigenetic rules of moral reasoning.’
Once, again, Wilson’s view is apparently nothing that cannot be reduced to scientific understandings or fully disclosed in scientific terms, and this apparency of hope for the future of humanity is that the triumph of scientific thought and method will allow us to achieve the Enlightenments ideal of disclosing the lawful regularities that govern or regulate all aspects of human experience. Hence, science will uncover the ‘bedrock of moral and religious sentiment, and the entire human epic will be mapped in the secular space of scientific formalism.’ The intent is not to denigrate Wilson’s attentive efforts to posit a more universal basis for the human condition, but is to demonstrate that any attempt to understand or improve upon the behaviour based on appeals to outmoded classical assumptions is unrealistic and outmoded. If the human mind did, in fact, evolve in something like deterministic fashion in gene-culture evolution -and if there were, in fact, innate mechanisms in mind that are both lawful and benevolent. Wilson’s program for uncovering these mechanisms could have merit. But for all th reasons that have been posited, classical determinism cannot explain the human condition and its evolutionary principle that govern in their functional dynamics, as Darwinian evolution should be modified to accommodate the complementary relationships between cultural and biological principles that governing evaluations do indeed have in them a strong, and firm grip upon genetical mutations that have attributively been the distribution in the contribution of human interactions with themselves in the finding to self-realizations and undivided wholeness.
Equally important, the classical assumption that the only privileged or valid knowledge is scientific is one of the primary sources of the stark division between the two cultures of humanistic and scientists-engineers, in this view, Wilson is quite correct in assuming that a timely end to the two culture war and a renewer dialogue between members of these cultures is now critically important to human survival. It is also clear, however, that dreams of reason based on the classical paradigm will only serve to perpetuate the two-culture war. Since these dreams are also remnants of an old scientific word view that no longer applies in theory in fact, to the actual character of physical reality, as reality is a probable service to frustrate the solution for which in found of a real world problem.
However, there is a renewed basis for dialogue between the two cultures, it is believed as quite different from that described by Wilson. Since classical epistemology has been displaced, or is the process of being displaced, by the new epistemology of science, the truths of science can no longer be viewed as transcendent ad absolute in the classical sense. The universe more closely resembles a giant organism than a giant machine, and it also displays emergent properties that serve to perpetuate the existence of the whole in both physics and biology that cannot be explained in terms of unrestricted determinism, simple causality, first causes, linear movements and initial conditions. Perhaps the first and most important precondition for renewed dialogue between the two cultural conflicting realizations as Einstein explicated upon its topic as, that a human being is a ‘part of the whole.’ It is this spared awareness that allows for the freedom, or existential choice of self-decision of choosing our free-will and the power to differentiate a direct cars to free ourselves of the ‘optical illusion’of our present conception of self as a ‘part limited in space and time’ and to widen ‘our circle of compassion to embrace al living creatures and the whole of nature in its beauty.’ Yet, one cannot, of course, merely reason oneself into an acceptance of this view, nonetheless, the inherent perceptions of the world are reason that the capacity for what Einstein termed ‘cosmic religious feedings.’ Perhaps, our enabling capability for that which is within us to have the obtainable ability to enabling of ours is to experience the self-realization, that of its realness is to sense its proven existence of a sense of elementarily leaving to some sorted conquering sense of universal consciousness, in so given to arise the existence of the universe, which really makes an essential difference to the existence or its penetrative spark of awakening indebtednesses of reciprocality?
Those who have this capacity will hopefully be able to communicate their enhanced scientific understanding of the relations among all aspects, and in part that is our self and the whole that are the universe in ordinary language wit enormous emotional appeal. The task lies before the poets of this renewing reality have nicely been described by Jonas Salk, which ‘man has come to the threshold of a state of consciousness, regarding his nature and his relationship to the Cosmos, in terms that reflects ‘reality.’ By using the processes of Nature and metaphor, to describe the forces by which it operates upon and within Man, we come as close to describing ‘reality’ as we can within te limits of our comprehension. Men will be very uneven in their capacity or such understanding, which, naturally, differs for different ages and cultures, and develops and changes over the course of time. For these reasons it will always be necessary to use metaphorical and mythical provisions as comprehensive guides to living. In this way. Man’s afforded efforts by the imagination and intellect can be playing the vital roles embarking upon the survival and his endurable evolution.
It is time, if not, only, concluded from evidence in its suggestive conditional relation, for which the religious imagination and the religious experience to engage upon the complementary truths of science in fitting that silence with meaning, as having to antiquate a continual emphasis, least of mention, that does not mean that those who do not believe in the existence of God or Being, should refrain in any sense from assessing the impletions of the new truths of science. Understanding these implications does not necessitate any ontology, and is in no way diminished by the lack of any ontology. And one is free to recognize a basis for a dialogue between science and religion for the same reason that one is free to deny that this basis exists -there is nothing in our current scientific world view that can prove the existence of God or Being and nothing that legitimate any anthropomorphic conceptions of the nature of God or Being. The question of belief in some ontology yet remains in what it has always been -a question, and the physical universe on the most basic level remains what it always been a riddle. And the ultimate answer to the question and the ultimate meaning of the riddle is, and probably always will be, a matter of personal choice and conviction.
The present time is clearly a time of a major paradigm shift, but consider the last great paradigm shift, the one that resulted in the Newtonian framework. This previous paradigm shift was profoundly problematic for the human spirit, it led to the conviction that we are strangers, freaks of nature, conscious beings in a universe that is almost entirely unconscious, and that, since the universe its strictly deterministic, even the free will we feel in regard to the movements of our bodies is an illusion. Yet it was probably necessary for the Western mind to go through the acceptance of such a paradigm.
The overwhelming success of Newtonian physics led most scientists and most philosophers of the Enlightenment to rely on it exclusively. As far as the quest for knowledge about reality was concerned, they regarded all of the other mode’s of expressing human experience, such as accounts of numinous emergences, poetry, art, and so on, as irrelevant. This reliance on science as the only way to the truth about the universe s clearly obsoletes. Science has to give up the illusion of its self-sufficiency and self-sufficiency of human reason. It needs to unite with other modes of knowing, n particular with contemplation, and help each of us move to higher levels of being and toward the Experience of Oneness.
If this is indeed the direction of the emerging world-view, then the paradigm shifts we are presently going through will prove to e nourishing to the human spirit and in correspondences with its deepest conscious or unconscious yearning -the yearning to emerge out of Plato’s shadows and into the light of luminosity.
EVOLVING PRINCIPLES OF THOUGHT
BOOK FOUR
SYSTEMATIC DELINEATION
Finding to a theory that magnifies the role of decisions, or free selection from among equally possible alternatives, in order to show that what appears to be objective or fixed by nature is in fact an artefact of human convention, similar to conventions of etiquette, or grammar, or law. Thus one might suppose that moral rules owe more to social convention than to anything imposed from outside, or have supposedly inexorable necessities are in fact the shadow of our linguistic conventions. The disadvantage of conventionalism is that it must show that alternative, equally workable conventions could have been adopted, and it is often easy to believe that, for example, if we hold that some ethical norm such as respect for promises or property is conventional, we ought to be able to show that human needs would have been equally well satisfied by a system involving a different norm, and this may be hard to establish.
A convention also suggested by Paul Grice (1913-88) directing participants in conversation to pay heed to an accepted purpose or direction of the exchange. Contributions made without paying this attention are liable to be rejected for other reasons than straightforward falsity: Something rue but unhelpful or inappropriate may meet with puzzlement or rejection. We can nevertheless, infer from the fact that it would be inappropriate to say something in some circumstance that what would be aid, were we to say it, would be false. This inference was frequently and in ordinary language philosophy, it being argued, for example, that since we do not normally say ‘there sees to be a barn there’ when there is unmistakably a barn there, it is false that on such occasions there seems to be a barn there.
There are two main views on the nature of theories. According to the ‘received view’ theories are partially interpreted axiomatic systems, according to the semantic view, a theory is a collection of models (Suppe, 1974). However, a natural language comes ready interpreted, and the semantic problem is no that of the specification but of understanding the relationship between terms of various categories (names, descriptions, predicates, adverbs . . .) and their meanings. An influential proposal is that this relationship is best understood by attempting to provide a ‘truth definition’ for the language, which will involve giving terms and structure of different kinds have on the truth-condition of sentences containing them.
The axiomatic method . . . as, . . . a proposition lid down as one from which we may begin, an assertion that we have taken as fundamental, at least for the branch of enquiry in hand. The axiomatic method is that of defining as a set of such propositions, and the ‘proof procedures’ or finding of how a proof ever gets started. Suppose I have as premises (1) p and (2) p q. Can I infer q? Only, it seems, if I am sure of, (3) (p & p q) q. Can I then infer q? Only, it seems, if I am sure that (4) (p & p q) q) q. For each new axiom (N) needing a further axiom (N + 1) telling me that the set so far implies q, and the regress never stops. The usual solution is to treat a system as containing not only axioms, but also rules of reference, allowing movement fro the axiom. The rule ‘modus ponens’ allow us to pass from the first two premises to 'q'. Charles Dodgson Lutwidge (1832-98) better known as Lewis Carroll’s puzzle shows that it is essential to distinguish two theoretical categories, although there may be choice about which to put in which category.
This type of theory (axiomatic) usually emerges as a body of (supposes) truths that are not nearly organized, making the theory difficult to survey or study a whole. The axiomatic method is an idea for organizing a theory (Hilbert 1970): one tries to select from among the supposed truths a small number from which all others can be seen to be deductively inferable. This makes the theory rather more tractable since, in a sense, all the truths are contained in those few. In a theory so organized, the few truths from which all others are deductively inferred are called axioms. In that, just as algebraic and differential equations, which were used to study mathematical and physical processes, could they be made mathematical objects, so axiomatic theories, like algebraic and differential equations, which are means of representing physical processes and mathematical structures, could be made objects of mathematical investigation.
In the traditional (as in Leibniz, 1704), many philosophers had the conviction that all truths, or all truths about a particular domain, followed from a few principles. These principles were taken to be either metaphysically prior or epistemologically prior or in the fist sense, they were taken to be entities of such a nature that what exists is ‘caused’ by them. When the principles were taken as epistemologically prior, that is, as axioms, they were taken to be epistemologically privileged either, e.g., self-evident, not needing to be demonstrated or (again, inclusive ‘or’) to be such that all truths do follow from them (by deductive inferences). Gödel (1984) showed that treating axiomatic theories as themselves mathematical objects, that mathematics, and even a small part of mathematics, elementary number theory, could not be axiomatized, that, more precisely, any class of axioms that in such that we could effectively decide, of any proposition, whether or not it was in the class, would be too small to capture all of the truths.
The use of a model to test for the consistency of an axiomatized system is older than modern logic. Descartes’s algebraic interpretation of Euclidean geometry provides a way of showing that if the theory of real numbers is consistent, so is the geometry. Similar mapping had been used by mathematicians in the 19th century for example to show that if Euclidean geometry is consistent, so are various non-Euclidean geometries. Model theory is the general study of this kind of procedure: The study of interpretations of formal system. Proof theory studies relations of deductibility as defined purely syntactically, that is, without reference to the intended interpretation of the calculus. More formally, a deductively valid argument starting from true premises, that yields the conclusion between formulae of a system. But once the notion of an interpretation is in place we can ask whether a formal system meets certain conditions. In particular, can it lead us from sentences that are true under some interpretation to ones that are false under the same interpretation? And if a sentence is true under all interpretations, is it also a theorem of the system? We can define a notion of validity (a formula is valid if it is true in all interpretations) and semantic consequence (a formula, written
{A1 . . . An} B, if it is true in all interpretations in which they are true) The central questions for a calculus will be whether all and only its theorems are valid, and whether {A1 . . . An} B, if and only if {A1. . . . An} B. These are the questions of the soundness and completeness of a formal system. For the propositional calculus this turns into the question of whether the proof theory delivers as theorems all and only tautologies. There are many axiomatizations of the propositional calculus that are consistent an complete. Gödel proved in 1929 that first-order predicate calculus is complete: any formula that is true under every interpretation is a theorem of the calculus.
The propositional calculus or logical calculus whose expressions are character representation sentences or propositions, and constants representing operations on those propositions to produce others of higher complexity. The operations include conjunction, disjunction, material implication and negation (although these need not be primitive). Propositional logic was partially anticipated by the Stoics but researched maturity only with the work of Frége, Russell, and Wittgenstein.
The concept introduced by Frége of a function taking a number of names as arguments, and delivering one proposition as the value. The idea is that ‘÷ love’s y’ is a propositional function, which yields the proposition ‘John loves Mary’ from those two arguments (in that order). A propositional function is therefore roughly equivalent to a property or relation. In Principia Mathematica, Russell and Whitehead take propositional functions to be the fundamental function, since the theory of descriptions could be taken as showing that other expressions denoting functions are incomplete symbols.
Keeping in mind, the two classical truth-values that a statement, proposition, or sentence can take. It is supposed in classical (two-valued) logic, that each statement has one of these values, and none has both. A statement is then false if and only if it is not true. The basis of this scheme is that to each statement there corresponds a determinate truth condition, or way the world must be for it to be true, and otherwise false. Statements may be felicitous or infelicitous in other dimensions (polite, misleading, apposite, witty, etc.) but truth is the central normative governing assertion. Considerations of vagueness may introduce greys into a black-and-white scheme. For the issue of whether falsity is the only way of failing to be true.
Formally, it is nonetheless, that any suppressed premise or background framework of thought necessary to make an argument valid, or a position tenable. More formally, a presupposition has been defined as a proposition whose truth is necessary for either the truth or the falsity of another statement. Thus, if ‘p’ presupposes ‘q’, ‘q’ must be true for p to be either true or false. In the theory of knowledge of Robin George Collingwood (1889-1943), any propositions capable of truth or falsity stand on a bed of ‘absolute presuppositions’ which are not properly capable of truth or falsity, since a system of thought will contain no way of approaching such a question. It was suggested by Peter Strawson (1919-), in opposition to Russell’s theory of ‘definite’ descriptions, that ‘there exists a King of France’ is a presupposition of ‘the King of France is bald’, the latter being neither true, nor false, if there is no King of France. It is, however, a little unclear whether the idea is that no statement at all is made in such a case, or whether a statement i can made, but fails of being one a true and oppose of either true ids false. The former option preserves classical logic, since we can still say that every statement is either true or false, but the latter does not, since in classical logic the law of ‘bivalence’ holds, and ensures that nothing at all is presupposed for any proposition to be true or false. The introduction of presupposition therefore means that either a third truth-value is found, ‘intermediate’ between truth and falsity, or classical logic is preserved, but it is impossible to tell whether a particular sentence expresses a proposition that is a candidate for truth ad falsity, without knowing more than the formation rules of the language. Each suggestion carries costs, and there is some consensus that at least where definite descriptions are involved, examples like the one given are equally well handed by regarding the overall sentence false when the existence claim fails.
A proposition may be true or false it is said to take the truth-value true, and if the latter the truth-value false. The idea behind the term is the analogy between assigning a propositional variable one or other of these values, as a formula of the propositional calculus, and assigning an object as the value of many other variable. Logics with intermediate values are called many-valued logics. Then, a truth-function of a number of propositions or sentences is a function of them that has a definite truth-value, depends only on the truth-values of the constituents. Thus (p & q) is a combination whose truth-value is true when ‘p’ is true and ‘q’ is true, and false otherwise, ¬ p is a truth-function of ‘p’, false when ‘p’ is true and true when ‘p’ is false. The way in which the value of the whole is determined by the combinations of values of constituents is presented in a truth table.
In whatever manner, truths of fact cannot be reduced to any identity and our only way of knowing them is a posteriori, by reference to the facts of the empirical world.
A proposition is knowable a priori if it can be known without experience of the specific course of events in the actual world. It may, however, be allowed that some experience is required to acquire the concepts involved in an a priori proposition. Some thing is knowable only a posteriori if it can be known a priori. The distinction given one of the fundamental problem areas of epistemology. The category of a priori propositions is highly controversial, since it is not clear how pure thought, unaided by experience, can give rise to any knowledge at all, and it has always been a concern of empiricism to deny that it can. The two great areas in which it seems to be so are logic and mathematics, so empiricists have commonly tried to show either that these are not areas of real, substantive knowledge, or that in spite of appearances their knowledge that we have in these areas is actually dependent on experience. The former line tries to show sense trivial or analytic, or matters of notation conventions of language. The latter approach is particularly y associated with Quine, who denies any significant slit between propositions traditionally thought of as a priori, and other deeply entrenched beliefs that occur in our overall view of the world.
Another contested category is that of a priori concepts, supposed to be concepts that cannot be ‘derived’ from experience, but which are presupposed in any mode of thought about the world, time, substance, causation, number, and self are candidates. The need for such concept s, and the nature of the substantive a prior knowledge to which they give rise, is the central concern of Kant ‘s Critique of Pure Reason.
Likewise, since their denial does not involve a contradiction, there is merely contingent: Their could have been in other ways a hold of the actual world, but not every possible one. Some examples are ‘Caesar crossed the Rubicon’ and ‘Leibniz was born in Leipzig’, as well as propositions expressing correct scientific generalizations. In Leibniz’s view truths of fact rest on the principle of sufficient reason, which is a reason why it is so. This reason is that the actual world (by which he means the total collection of things past, present and future) is better than any other possible world and therefore created by God. The foundation of his thought is the conviction that to each individual there corresponds a complete notion, knowable only to God, from which is deducible all the properties possessed by the individual at each moment in its history. It is contingent that God actualizes te individual that meets such a concept, but his doing so is explicable by the principle of ‘sufficient reason’, whereby God had to actualize just that possibility in order for this to be the best of all possible worlds. This thesis is subsequently lampooned by Voltaire (1694-1778), in whom of which was prepared to take refuge in ignorance, as the nature of the soul, or the way to reconcile evil with divine providence.
In defending the principle of sufficient reason sometimes described as the principle that nothing can be so without there being a reason why it is so. But the reason has to be of a particularly potent kind: eventually it has to ground contingent facts in necessities, and in particular in the reason an omnipotent and perfect being would have for actualizing one possibility than another. Among the consequences of the principle is Leibniz’s relational doctrine of space, since if space were an infinite box there could be no reason for the world to be at one point in rather than another, and God placing it at any point violate the principle. In Abelard’s (1079-1142), as in Leibniz, the principle eventually forces te recognition that the actual world is the best of all possibilities, since anything else would be inconsistent with the creative power that actualizes possibilities.
If truth consists in concept containment, then it seems that all truths are analytic and hence necessary; and if they are all necessary, surely they are all truths of reason. In that not every truth can be reduced to an identity in a finite number of steps; in some instances revealing the connection between subject and predicate concepts would require an infinite analysis, while this may entail that we cannot prove such proposition as a prior, it does not appear to show that proposition could have been false. Intuitively, it seems a better ground for supposing that it is a necessary truth of a special sort. A related question arises from the idea that truths of fact depend on God’s decision to create the best world: If it is part of the concept of this world that it is best, how could its existence be other than necessary? An accountable and responsively answered explanation would be so, that any relational question that brakes the norm lay eyes on its existence in the manner other than hypothetical necessities, i.e., it follows from God’s decision to create the world, but God had the power to create this world, but God is necessary, so how could he have decided to do anything else? Leibniz says much more about these matters, but it is not clear whether he offers any satisfactory solutions.
The view that the terms in which we think of some area are sufficiently infected with error for it to be better to abandon them than to continue to try to give coherent theories of their use. Eliminativism should be distinguished from scepticism that claims that we cannot know the truth about some area; eliminativism claims rather that there are no truth there to be known, in the terms that we currently think. An eliminativist about theology simply counsels abandoning the terms or discourse of theology, and that will include abandoning worries about the extent of theological knowledge.
Eliminativists in the philosophy of mind counsel abandoning the whole network of terms mind, consciousness, self, qualia that usher in the problems of mind and body. Sometimes the argument for doing this is that we should wait for a supposed future understanding of ourselves, based on cognitive science and better than any our current mental descriptions provide, sometimes it is supposed that physicalism shows that no mental description of ourselves could possibly be true.
Greek scepticism centred on the value of enquiry and questioning, scepticism is now the denial that knowledge or even rational belief is possible, either about some specific subject-matter, e.g., ethics, o r in any atra whatsoever. Classically, scepticism springs from the observation that the best methods in some area seem to fall short of giving us contact with the truth, e.g., there is a gulf between appearance and reality, and in frequency cites the conflicting judgements that our methods deliver, with the result that questions of truth become undecidable.
Sceptical tendencies emerged in the 14th-century writings of Nicholas of Autrecourt. His criticisms of any certainty beyond the immediate deliverance of the senses and basic logic, and in particular of any knowledge of either intellectual or material substances, anticipate the later scepticism of Balye and Hume. The; later distinguishes between Pyrrhonistic and excessive scepticism, which he regarded as unlivable, and the more mitigated scepticism that accepts every day or commonsense beliefs (not as the delivery of reason, but as due more to custom and habit), but is duly wary of the power of reason to give us much more. Mitigated scepticism is thus closer to the attitude fostered by ancient scepticism from Pyrrho through to Sexus Empiricus. Although the phrase ‘Cartesian scepticism’ is sometimes used, Descartes himself was not a sceptic, but in the method of doubt, uses a sceptical scenario in order to begin the process of finding a secure mark of knowledge. Descartes himself trusts a category of ‘clear and distinct’ ideas, not far removed from the phantasia kataleptiké of the Stoics.
Scepticism should not be confused with relativism, which is a doctrine about the nature of truth, and may be motivated by trying to avoid scepticism. Nor is it identical with eliminativism, which counsels abandoning an area of thought altogether, not because we cannot know the truth, but because there are no truths capable of being framed in the terms we use.
Descartes’s theory of knowledge starts with the quest for certainty, for an indubitable starting-point or foundation on the basis alone of which progress is possible. This is eventually found in the celebrated ‘Cogito ergo sum’: I think therefore I am. By locating the point of certainty in my own awareness of my own self, Descartes gives a first-person twist to the theory of knowledge that dominated them following centuries in spite of various counter-attacks on behalf of social and public starting-points. The metaphysical associated with this priority are the famous Cartesian dualism, or separation of mind and matter into two different but interacting substances, Descartes rigorously and rightly sees that it takes divine dispensation to certify any relationship between the two realms thus divided, and to prove the reliability of the senses invokes a ‘clear and distinct perception’ of highly dubious proofs of the existence of a benevolent deity. This has not met general acceptance: as Hume drily puts it, ‘to have recourse to the veracity of the supreme Being, in order to prove the veracity of our senses, is surely making a very unexpected circuit’.
In his own time Descartes’s conception of the entirely separate substance of the mind was recognized to give rise to insoluble problems of the nature of the causal connection between the two. It also gives rise to the problem, insoluble in its own terms, of other minds. Descartes’s notorious denial that non-human animals are conscious is a stark illustration of the problem. In his conception of matter Descartes also gives preference to rational cogitation over anything derived from the senses. Since we can conceive of the matter of a ball of wax surviving changes to its sensible qualities, matter is not an empirical concept, but eventually an entirely geometrical one, with extension and motion as its only physical nature. Descartes’s thought, as reflected in Leibniz, that the qualities of sense experience have no resemblance to qualities of things, so that knowledge of the external world is essentially knowledge of structure rather than of filling. On this basis Descartes erects a remarkable physics. Since matter is in effect the same as extension there can be no empty space or ‘void’, since there is no empty space motion is not a question of occupying previously empty space, but is to be thought of in terms of vortices (like the motion of a liquid).
Although the structure of Descartes’s epistemology, theories of mind, and theory of matter have been rejected many times, their relentless exposure of the hardest issues, their exemplary clarity, and even their initial plausibility, all contrives to make him the central point of reference for modern philosophy.
The self conceived as Descartes presents it in the first two Meditations: aware only of its own thoughts, and capable of disembodied existence, neither situated in a space nor surrounded by others. This is the pure self of ‘I-ness’ that we are tempted to imagine as a simple unique thing that make up our essential identity. Descartes’s view that he could keep hold of this nugget while doubting everything else is criticized by Lichtenberg and Kant, and most subsequent philosophers of mind.
Descartes holds that we do not have any knowledge of any empirical proposition about anything beyond the contents of our own minds. The reason, roughly put, is that there is a legitimate doubt about all such propositions because there is no way to deny justifiably that our senses are being stimulated by some cause (an evil spirit, for example) which is radically different from the objects that we normally think affect our senses.
He also points out, that the senses (sight, hearing, touch, etc., are often unreliable, and ‘it is prudent never to trust entirely those who have deceived us even once’, he cited such instances as the straight stick that looks ben t in water, and the square tower that look round from a distance. This argument of illusion, has not, on the whole, impressed commentators, and some of Descartes’ contemporaries pointing out that since such errors come to light as a result of further sensory information, it cannot be right to cast wholesale doubt on the evidence of the senses. But Descartes regarded the argument from illusion as only the first stage in softening up process which would ‘lead the mind away from the senses’. He admits that there are some cases of sense-base belief about which doubt would be insane, e.g., the belief that I am sitting here by the fire, wearing a winter dressing gown’.
Descartes was to realize that there was nothing in this view of nature that could explain or provide a foundation for the mental, or from direct experience as distinctly human. In a mechanistic universe, he said, there is no privileged place or function for mind, and the separation between mind and matter is absolute. Descartes was also convinced, that the immaterial essences that gave form and structure to this universe were coded in geometrical and mathematical ideas, and this insight led him to invent algebraic geometry.
A scientific understanding of these ideas could be derived, said Descartes, with the aid of precise deduction, and he also claimed that the contours of physical reality could be laid out in three-dimensional coordinates. Following the publication of Newton’s Principia Mathematica in 1687, reductionism and mathematical modelling became the most powerful tools of modern science. And the dream that the entire physical world could be known and mastered through the extension and refinement of mathematical theory became the central feature and guiding principle of scientific knowledge.
Having to its recourse of knowledge, its cental questions include the origin of knowledge, the place of experience in generating knowledge, and the place of reason in doing so, the relationship between knowledge and certainty, and between knowledge and the impossibility of error, the possibility of universal scepticism, and the changing forms of knowledge that arise from new conceptualizations of the world. All of these issues link with other central concerns of philosophy, such as the nature of truth and the natures of experience and meaning.
Foundationalism was associated with the ancient Stoics, and in the modern era with Descartes (1596-1650). Who discovered his foundations in the ‘clear and distinct’ ideas of reason? Its main opponent is Coherentism, or the view that a body of propositions mas be known without a foundation in certainty, but by their interlocking strength, than as a crossword puzzle may be known to have been solved correctly even if each answer, taken individually, admits of uncertainty. Difficulties at this point led the logical passivists to abandon the notion of an epistemological foundation altogether, and to flirt with the coherence theory of truth. It is widely accepted that trying to make the connection between thought and experience through basic sentences depends on an untenable ‘myth of the given’.
Still in spite of these concerns, the problem, least of mention, is of defining knowledge in terms of true beliefs plus some favoured relations between the believer and the facts that began with Plato’s view in the ‘Theaetetus,’ that knowledge is true belief, and some logos. Due of its nonsynthetic epistemology, the enterprising of studying the actual formation of knowledge by human beings, without aspiring to certify those processes as rational, or its proof against ‘scepticism’ or even apt to yield the truth. Natural epistemology would therefore blend into the psychology of learning and the study of episodes in the history of science. The scope for ‘external’ or philosophical reflection of the kind that might result in scepticism or its refutation is markedly diminished. Despite the fact that the terms of modernity are so distinguished as exponents of the approach include Aristotle, Hume, and J. S. Mills.
The task of the philosopher of a discipline would then be to reveal the correct method and to unmask counterfeits. Although this belief lay behind much positivist philosophy of science, few philosophers now subscribe to it. It places too well a confidence in the possibility of a purely previous ‘first philosophy’, or viewpoint beyond that of the work one’s way of practitioners, from which their best efforts can be measured as good or bad. These standpoints now seem that too many philosophers to be a fanciefancy, that the more modest of tasks that are actually adopted at various historical stages of investigation into different areas with the aim not so much of criticizing but more of systematization, in the presuppositions of a particular field at a particular tie. There is still a role for local methodological disputes within the community investigators of some phenomenon, with one approach charging that another is unsound or unscientific, but logic and philosophy will not, on the modern view, provide an independent arsenal of weapons for such battles, which indeed often come to seem more like political bids for ascendancy within a discipline.
This is an approach to the theory of knowledge that sees an important connection between the growth of knowledge and biological evolution. An evolutionary epistemologist claims that the development of human knowledge processed through some natural selection process, the best example of which is Darwin’s theory of biological natural selection. There is a widespread misconception that evolution proceeds according to some plan or direct, but it has neither, and the role of chance ensures that its future course will be unpredictable. Random variations in individual organisms create tiny differences in their Darwinian fitness. Some individuals have more offsprings than others, and the characteristics that increased their fitness thereby become more prevalent in future generations. Once upon a time, at least a mutation occurred in a human population in tropical Africa that changed the haemoglobin molecule in a way that provided resistance to malaria. This enormous advantage caused the new gene to spread, with the unfortunate consequence that sickle-cell anaemia came to exist.
Chance can influence the outcome at each stage: First, in the creation of genetic mutation, second, in wether the bearer lives long enough to show its effects, thirdly, in chance events that influence the individual’s actual reproductive success, and fourth, in whether a gene even if favoured in one generation, is, happenstance, eliminated in the next, and finally in the many unpredictable environmental changes that will undoubtedly occur in the history of any group of organisms. As Harvard biologist Stephen Jay Gould has so vividly expressed that process over again, the outcome would surely be different. Not only might there not be humans, there might not even be anything like mammals.
We will often emphasis the elegance of traits shaped by natural selection, but the common idea that nature creates perfection needs to be analysed carefully. The extent to which evolution achieves perfection depends on exactly what you mean. If you mean ‘Does natural selections always take the best path for the long-term welfare of a species?’ The answer is no. That would require adaption by group selection, and this is, unlikely. If you mean ‘Does natural selection creates every adaption that would be valuable?’ The answer again, is no. For instance, some kinds of South American monkeys can grasp branches with their tails. The trick would surely also be useful to some African species, but, simply because of bad luck, none have it. Some combination of circumstances started some ancestral South American monkeys using their tails in ways that ultimately led to an ability to grab onto branches, while no such development took place in Africa. Mere usefulness of a trait does not necessitate a means in that what will understandably endure phylogenesis or evolution.
No comments:
Post a Comment